Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 289
Filtrar
2.
ACS Biomater Sci Eng ; 2024 May 12.
Artículo en Inglés | MEDLINE | ID: mdl-38736179

RESUMEN

Disruption of the symbiosis of extra/intratumoral metabolism is a good strategy for treating tumors that shuttle resources from the tumor microenvironment. Here, we report a precision treatment strategy for enhancing pyruvic acid and intratumoral acidosis to destroy tumoral metabolic symbiosis to eliminate tumors; this approach is based on PEGylated gold and lactate oxidase-modified aminated dendritic mesoporous silica with lonidamine and ferrous sulfide loading (PEG-Au@DMSNs/FeS/LND@LOX). In the tumor microenvironment, LOX oxidizes lactic acid to produce pyruvate, which represses tumor cell proliferation by inhibiting histone gene expression and induces ferroptosis by partial histone monoubiquitination. In acidic tumor conditions, the nanoparticles release H2S gas and Fe2+ ions, which can inhibit catalase activity to promote the Fenton reaction of Fe2+, resulting in massive ·OH production and ferroptosis via Fe3+. More interestingly, the combination of H2S and LND (a monocarboxylic acid transporter inhibitor) can cause intracellular acidosis by lactate, and protons overaccumulate in cells. Multiple intracellular acidosis is caused by lactate-pyruvate axis disorders. Moreover, H2S provides motive power to intensify the shuttling of nanoparticles in the tumor region. The findings confirm that this nanomedicine system can enable precise antitumor effects by disrupting extra/intratumoral metabolic symbiosis and inducing ferroptosis and represents a promising active drug delivery system candidate for tumor treatment.

3.
bioRxiv ; 2024 Apr 18.
Artículo en Inglés | MEDLINE | ID: mdl-38659969

RESUMEN

Multisystem Inflammatory Syndrome in Children (MIS-C) is a severe complication of SARS-CoV-2 infection characterized by multi-organ involvement and inflammation. Testing of cellular function ex vivo to understand the aberrant immune response in MIS-C is limited. Despite strong antibody production in MIS-C, SARS-CoV-2 nucleic acid testing can remain positive for 4-6 weeks after infection. Therefore, we hypothesized that dysfunctional cell-mediated antibody responses downstream of antibody production may be responsible for delayed clearance of viral products in MIS-C. In MIS-C, monocytes were hyperfunctional for phagocytosis and cytokine production, while natural killer (NK) cells were hypofunctional for both killing and cytokine production. The decreased NK cell cytotoxicity correlated with an NK exhaustion marker signature and systemic IL-6 levels. Potentially providing a therapeutic option, cellular engagers of CD16 and SARS-CoV-2 proteins were found to rescue NK cell function in vitro. Together, our results reveal dysregulation in antibody-mediated cellular responses unique to MIS-C that likely contribute to the immune pathology of this disease.

4.
Eur J Pharmacol ; 971: 176548, 2024 May 15.
Artículo en Inglés | MEDLINE | ID: mdl-38570080

RESUMEN

OBJECTIVES: Thrombocytopenia is a disease in which the number of platelets in the peripheral blood decreases. It can be caused by multiple genetic factors, and numerous challenges are associated with its treatment. In this study, the effects of alnustone on megakaryocytes and platelets were investigated, with the aim of developing a new therapeutic approach for thrombocytopenia. METHODS: Random forest algorithm was used to establish a drug screening model, and alnustone was identified as a natural active compound that could promote megakaryocyte differentiation. The effect of alnustone on megakaryocyte activity was determined using cell counting kit-8. The effect of alnustone on megakaryocyte differentiation was determined using flow cytometry, Giemsa staining, and phalloidin staining. A mouse model of thrombocytopenia was established by exposing mice to X-rays at 4 Gy and was used to test the bioactivity of alnustone in vivo. The effect of alnustone on platelet production was determined using zebrafish. Network pharmacology was used to predict targets and signaling pathways. Western blotting and immunofluorescence staining determined the expression levels of proteins. RESULTS: Alnustone promoted the differentiation and maturation of megakaryocytes in vitro and restored platelet production in thrombocytopenic mice and zebrafish. Network pharmacology and western blotting showed that alnustone promoted the expression of interleukin-17A and enhanced its interaction with its receptor, and thereby regulated downstream MEK/ERK signaling and promoted megakaryocyte differentiation. CONCLUSIONS: Alnustone can promote megakaryocyte differentiation and platelet production via the interleukin-17A/interleukin-17A receptor/Src/RAC1/MEK/ERK signaling pathway and thus provides a new therapeutic strategy for the treatment of thrombocytopenia.


Asunto(s)
Megacariocitos , Trombocitopenia , Ratones , Animales , Megacariocitos/metabolismo , Pez Cebra/metabolismo , Interleucina-17/metabolismo , Plaquetas , Trombocitopenia/tratamiento farmacológico , Trombocitopenia/metabolismo , Transducción de Señal , Quinasas de Proteína Quinasa Activadas por Mitógenos/metabolismo , Quinasas de Proteína Quinasa Activadas por Mitógenos/farmacología
5.
Int J Biol Sci ; 20(6): 2236-2260, 2024.
Artículo en Inglés | MEDLINE | ID: mdl-38617546

RESUMEN

Thrombocytopenia, a prevalent hematologic challenge, correlates directly with the mortality of numerous ailments. Current therapeutic avenues for thrombocytopenia are not without limitations. Here, we identify genistin, an estrogen analogue, as a promising candidate for thrombocytopenia intervention, discovered through AI-driven compound library screening. While estrogen's involvement in diverse biological processes is recognized, its role in thrombopoiesis remains underexplored. Our findings elucidate genistin's ability to enhance megakaryocyte differentiation, thereby augmenting platelet formation and production. In vivo assessments further underscore genistin's remedial potential against radiation-induced thrombocytopenia. Mechanistically, genistin's efficacy is attributed to its direct interaction with estrogen receptor ß (ERß), with subsequent activation of both ERK1/2 and the Akt signaling pathways membrane ERß. Collectively, our study positions genistin as a prospective therapeutic strategy for thrombocytopenia, shedding light on novel interplays between platelet production and ERß.


Asunto(s)
Isoflavonas , Trombocitopenia , Humanos , Receptor beta de Estrógeno/genética , Trombocitopenia/tratamiento farmacológico , Bibliotecas de Moléculas Pequeñas
6.
Front Cell Infect Microbiol ; 14: 1327083, 2024.
Artículo en Inglés | MEDLINE | ID: mdl-38562964

RESUMEN

Background: Gut microbiota has been associated with dermatological problems in earlier observational studies. However, it is unclear whether gut microbiota has a causal function in dermatological diseases. Methods: Thirteen dermatological diseases were the subject of bidirectional Mendelian randomization (MR) research aimed at identifying potential causal links between gut microbiota and these diseases. Summary statistics for the Genome-Wide Association Study (GWAS) of gut microbiota and dermatological diseases were obtained from public datasets. With the goal of evaluating the causal estimates, five acknowledged MR approaches were utilized along with multiple testing corrections, with inverse variance weighted (IVW) regression serving as the main methodology. Regarding the taxa that were causally linked with dermatological diseases in the forward MR analysis, reverse MR was performed. A series of sensitivity analyses were conducted to test the robustness of the causal estimates. Results: The combined results of the five MR methods and sensitivity analysis showed 94 suggestive and five significant causal relationships. In particular, the genus Eubacterium_fissicatena_group increased the risk of developing psoriasis vulgaris (odds ratio [OR] = 1.32, pFDR = 4.36 × 10-3), family Bacteroidaceae (OR = 2.25, pFDR = 4.39 × 10-3), genus Allisonella (OR = 1.42, pFDR = 1.29 × 10-2), and genus Bacteroides (OR = 2.25, pFDR = 1.29 × 10-2) increased the risk of developing acne; and the genus Intestinibacter increased the risk of urticaria (OR = 1.30, pFDR = 9.13 × 10-3). A reverse MR study revealed insufficient evidence for a significant causal relationship. In addition, there was no discernible horizontal pleiotropy or heterogeneity. Conclusion: This study provides novel insights into the causality of gut microbiota in dermatological diseases and therapeutic or preventive paradigms for cutaneous conditions.


Asunto(s)
Acné Vulgar , Microbioma Gastrointestinal , Humanos , Microbioma Gastrointestinal/genética , Estudio de Asociación del Genoma Completo , Análisis de la Aleatorización Mendeliana , Bacteroides/genética
7.
Elife ; 132024 Apr 04.
Artículo en Inglés | MEDLINE | ID: mdl-38573820

RESUMEN

Thrombocytopenia caused by long-term radiotherapy and chemotherapy exists in cancer treatment. Previous research demonstrates that 5-Hydroxtrayptamine (5-HT) and its receptors induce the formation of megakaryocytes (MKs) and platelets. However, the relationships between 5-HT1A receptor (5-HTR1A) and MKs is unclear so far. We screened and investigated the mechanism of vilazodone as a 5-HTR1A partial agonist in promoting MK differentiation and evaluated its therapeutic effect in thrombocytopenia. We employed a drug screening model based on machine learning (ML) to screen the megakaryocytopoiesis activity of Vilazodone (VLZ). The effects of VLZ on megakaryocytopoiesis were verified in HEL and Meg-01 cells. Tg (itga2b: eGFP) zebrafish was performed to analyze the alterations in thrombopoiesis. Moreover, we established a thrombocytopenia mice model to investigate how VLZ administration accelerates platelet recovery and function. We carried out network pharmacology, Western blot, and immunofluorescence to demonstrate the potential targets and pathway of VLZ. VLZ has been predicted to have a potential biological action. Meanwhile, VLZ administration promotes MK differentiation and thrombopoiesis in cells and zebrafish models. Progressive experiments showed that VLZ has a potential therapeutic effect on radiation-induced thrombocytopenia in vivo. The network pharmacology and associated mechanism study indicated that SRC and MAPK signaling are both involved in the processes of megakaryopoiesis facilitated by VLZ. Furthermore, the expression of 5-HTR1A during megakaryocyte differentiation is closely related to the activation of SRC and MAPK. Our findings demonstrated that the expression of 5-HTR1A on MK, VLZ could bind to the 5-HTR1A receptor and further regulate the SRC/MAPK signaling pathway to facilitate megakaryocyte differentiation and platelet production, which provides new insights into the alternative therapeutic options for thrombocytopenia.


Asunto(s)
Trombocitopenia , Clorhidrato de Vilazodona , Ratones , Animales , Clorhidrato de Vilazodona/efectos adversos , Clorhidrato de Vilazodona/metabolismo , Pez Cebra , Receptor de Serotonina 5-HT1A/metabolismo , Plaquetas/metabolismo , Trombocitopenia/tratamiento farmacológico , Trombocitopenia/metabolismo , Megacariocitos/metabolismo , Trombopoyesis
8.
Neural Regen Res ; 19(11): 2467-2479, 2024 Nov 01.
Artículo en Inglés | MEDLINE | ID: mdl-38526283

RESUMEN

JOURNAL/nrgr/04.03/01300535-202419110-00027/figure1/v/2024-03-08T184507Z/r/image-tiff Amyloid-beta-induced neuronal cell death contributes to cognitive decline in Alzheimer's disease. Citri Reticulatae Semen has diverse beneficial effects on neurodegenerative diseases, including Parkinson's and Huntington's diseases, however, the effect of Citri Reticulatae Semen on Alzheimer's disease remains unelucidated. In the current study, the anti-apoptotic and autophagic roles of Citri Reticulatae Semen extract on amyloid-beta-induced apoptosis in PC12 cells were first investigated. Citri Reticulatae Semen extract protected PC12 cells from amyloid-beta-induced apoptosis by attenuating the Bax/Bcl-2 ratio via activation of autophagy. In addition, Citri Reticulatae Semen extract was confirmed to bind amyloid-beta as revealed by biolayer interferometry in vitro, and suppress amyloid-beta-induced pathology such as paralysis, in a transgenic Caenorhabditis elegans in vivo model. Moreover, genetically defective Caenorhabditis elegans further confirmed that the neuroprotective effect of Citri Reticulatae Semen extract was autophagy-dependent. Most importantly, Citri Reticulatae Semen extract was confirmed to improve cognitive impairment, neuronal injury and amyloid-beta burden in 3×Tg Alzheimer's disease mice. As revealed by both in vitro and in vivo models, these results suggest that Citri Reticulatae Semen extract is a potential natural therapeutic agent for Alzheimer's disease via its neuroprotective autophagic effects.

9.
Biomolecules ; 14(3)2024 Feb 23.
Artículo en Inglés | MEDLINE | ID: mdl-38540688

RESUMEN

(1) Background: Radiation-induced thrombocytopenia (RIT) often occurs in cancer patients undergoing radiation therapy, which can result in morbidity and even death. However, a notable deficiency exists in the availability of specific drugs designed for the treatment of RIT. (2) Methods: In our pursuit of new drugs for RIT treatment, we employed three deep learning (DL) algorithms: convolutional neural network (CNN), deep neural network (DNN), and a hybrid neural network that combines the computational characteristics of the two. These algorithms construct computational models that can screen compounds for drug activity by utilizing the distinct physicochemical properties of the molecules. The best model underwent testing using a set of 10 drugs endorsed by the US Food and Drug Administration (FDA) specifically for the treatment of thrombocytopenia. (3) Results: The Hybrid CNN+DNN (HCD) model demonstrated the most effective predictive performance on the test dataset, achieving an accuracy of 98.3% and a precision of 97.0%. Both metrics surpassed the performance of the other models, and the model predicted that seven FDA drugs would exhibit activity. Isochlorogenic acid A, identified through screening the Chinese Pharmacopoeia Natural Product Library, was subsequently subjected to experimental verification. The results indicated a substantial enhancement in the differentiation and maturation of megakaryocytes (MKs), along with a notable increase in platelet production. (4) Conclusions: This underscores the potential therapeutic efficacy of isochlorogenic acid A in addressing RIT.


Asunto(s)
Ácido Clorogénico/análogos & derivados , Aprendizaje Profundo , Trombocitopenia , Estados Unidos , Humanos , Redes Neurales de la Computación , Algoritmos
10.
Phytomedicine ; 127: 155463, 2024 May.
Artículo en Inglés | MEDLINE | ID: mdl-38452694

RESUMEN

BACKGROUND: Ferroptosis, a unique type of cell death triggered by iron-dependent lipid peroxidation, plays a critical role in the pathogenesis of Alzheimer's disease (AD), a debilitating condition marked by memory loss and cognitive impairment due to the accumulation of beta-amyloid (Aß) and hyperphosphorylated Tau protein. Increasing evidence suggests that inhibitors of ferroptosis could be groundbreaking in the treatment of AD. METHOD: In this study, we established in vitro ferroptosis using erastin-, RSL-3-, hemin-, and iFSP1-induced PC-12 cells. Using MTT along with Hoechst/PI staining, we assessed cell viability and death. To determine various aspects of ferroptosis, we employed fluorescence probes, including DCFDA, JC-1, C11 BODIPY, Mito-Tracker, and PGSK, to measure ROS production, mitochondrial membrane potential, lipid peroxidation, mitochondrial morphology, and intracellular iron levels. Additionally, Western blotting, biolayer interferometry technology, and shRNA were utilized to investigate the underlying molecular mechanisms. Furthermore, p-CAX APP Swe/Ind- and pRK5-EGFP-Tau P301L overexpressing PC-12 cells, along with Caenorhabditis elegans (C. elegans) strains CL4176, CL2331, and BR5270, were employed to examine ferroptosis in AD models. RESULTS: Here, we conducted a screening of our natural medicine libraries and identified the ethanol extract of Penthorum chinense Pursh (PEE), particularly its ethyl acetate fraction (PEF), displayed inhibitory effects on ferroptosis in cells. Specifically, PEF inhibited the generation of ROS, lipid peroxidation, and intracellular iron levels. Furthermore, PEF demonstrated protective effects against H2O2-induced cell death, ROS production, and mitochondrial damage. Mechanistic investigations unveiled PEF's modulation of intracellular iron accumulation, GPX4 expression and activity, and FSP1 expression. In p-CAX APP Swe/Ind and pRK5-EGFP-Tau P301L overexpressing PC-12 cells, PEF significantly reduced cell death, as well as ROS and lipid peroxidase production. Moreover, PEF ameliorated paralysis and slowing rate in Aß and Tau transgenic C. elegans models, while inhibiting ferroptosis, as evidenced by decreased DHE intensity, lipid peroxidation levels, iron accumulation, and expression of SOD-3 and gst-4. CONCLUSION: Our findings highlight the suppressive effects of PEF on ferroptosis in AD cellular and C. elegans models. This study helps us better understand how ferroptosis affects AD and emphasizes the potential of PCP as a candidate for AD intervention.


Asunto(s)
Enfermedad de Alzheimer , Ferroptosis , Animales , Enfermedad de Alzheimer/tratamiento farmacológico , Enfermedad de Alzheimer/genética , Caenorhabditis elegans , Especies Reactivas de Oxígeno/metabolismo , Peróxido de Hidrógeno/farmacología , Hierro/metabolismo
11.
Int J Mol Sci ; 25(5)2024 Mar 06.
Artículo en Inglés | MEDLINE | ID: mdl-38474281

RESUMEN

As the principal ligand for NKG2D, MICA elicits the recruitment of subsets of T cells and NK cells in innate immunity. MICA gene variants greatly impact the functionality and expression of MICA in humans. The current study evaluated whether MICA polymorphisms distinctively influence the pathogenesis of psoriasis (PSO), rheumatoid arthritis (RA), and systemic lupus erythematosus (SLE) in Taiwanese subjects. The distributions of MICA alleles and levels of serum soluble NKG2D were compared between healthy controls and patients with PSO, RA, and SLE, respectively. The binding capacities and cell surface densities of MICA alleles were assessed by utilizing stable cell lines expressing four prominent Taiwanese MICA alleles. Our data revealed that MICA*010 was significantly associated with risks for PSO and RA (PFDR = 1.93 × 10-15 and 0.00112, respectively), while MICA*045 was significantly associated with predisposition to SLE (PFDR = 0.0002). On the other hand, MICA*002 was associated with protection against RA development (PFDR = 4.16 × 10-6), while MICA*009 was associated with a low risk for PSO (PFDR = 0.0058). MICA*002 exhibited the highest binding affinity for NKG2D compared to the other MICA alleles. Serum concentrations of soluble MICA were significantly elevated in SLE patients compared to healthy controls (p = 0.01). The lack of cell surface expression of the MICA*010 was caused by its entrapment in the endoplasmic reticulum. As a prevalent risk factor for PSO and RA, MICA*010 is deficient in cell surface expression and is unable to interact with NKG2D. Our study suggests that MICA alleles distinctively contribute to the pathogenesis of PSO, RA, and SLE in Taiwanese people.


Asunto(s)
Artritis Reumatoide , Pueblos del Este de Asia , Lupus Eritematoso Sistémico , Humanos , Predisposición Genética a la Enfermedad , Antígenos de Histocompatibilidad Clase I/genética , Lupus Eritematoso Sistémico/genética , Subfamilia K de Receptores Similares a Lectina de Células NK/genética , Polimorfismo Genético
12.
Heliyon ; 10(3): e24336, 2024 Feb 15.
Artículo en Inglés | MEDLINE | ID: mdl-38318072

RESUMEN

Background: Qing-Jin-Hua-Tan decoction (QJHTD) is a classic traditional Chinese medicine (TCM) prescription that first appeared in the ancient book Yi-Xue-Tong-Zhi. QJHTD has shown effectiveness for treating chronic obstructive pulmonary disease (COPD), although its mechanisms of action are still perplexing. The molecular mechanisms underlying the curative effects of QJHTD on COPD is worth exploring. Methods: In vitro antiapoptotic and antiinflammatory activities of QJHTD were evaluated using cell viability, proliferation, apoptosis rate, and expression of IL-1ß and TNF-α in BEAS-2B and RAW264.7 cells challenged with cigarette smoke (CS) extract (CSE) and lipopolysaccharide (LPS). In vivo therapeutic activities of QJHTD were evaluated using respiratory parameters (peak inspiratory flow (PIFb) and peak expiratory flow (PEFb) values), histopathology (mean linear intercept, MLI), and proinflammatory cytokine (IL-1ß and TNF-α) and cleaved caspase-3 (c-Casp3) levels in the lung tissue of CS-LPS-exposed BALB/c mice. Network pharmacology-based prediction, transcriptomic analysis, and metabolic profiling were employed to investigate the signaling molecules and metabolites pertinent to the anti-COPD action of QJHTD. Results: Increased cell viability and proliferation with decreased apoptosis rate and proinflammatory cytokine expression were noted after QJHTD intervention. QJHTD administration elevated PEFb and PIFb values, reduced MLI, and inhibited IL-1ß, TNF-α, and c-Casp3 expression in vivo. Integrated network pharmacology-transcriptomics revealed that suppressing inflammatory signals (IL-1ß, IL-6, TNF, IκB-NF-κB, TLR, and MAPK) and apoptosis contributed to the anti-COPD property of QJHTD. Metabolomic profiling unveiled prominent roles for the suppression of apoptosis and sphingolipid (SL) metabolism and the promotion of choline (Ch) metabolism in the anti-COPD effect of QJHTD. Integrative transcriptomics-metabolomics unraveled the correlation between SL metabolism and apoptosis. In silico molecular docking revealed that acacetin, as an active compound in QJHTD, could bind with high affinity to MEK1, MEK2, ERK1, ERK2, Bcl2, NF-κB, and alCDase target proteins. Conclusion: The therapeutic effect of QJHTD on COPD is dependent on regulating inflammatory signals and apoptosis-directed SL metabolism. These findings provide deeper insights into the molecular mechanism of action of QJHTD against COPD and justify its theoretical promise in novel pharmacotherapy for this multifactorial disease.

13.
Mech Ageing Dev ; 218: 111901, 2024 Apr.
Artículo en Inglés | MEDLINE | ID: mdl-38215997

RESUMEN

Pharmacological strategies to delay aging and combat age-related diseases are increasingly promising. This study explores the anti-aging and therapeutic effects of two novel 18-norspirostane steroidal saponins from Trillium tschonoskii Maxim, namely deoxytrillenoside CA (DTCA) and epitrillenoside CA (ETCA), using Caenorhabditis elegans (C. elegans). Both DTCA and ETCA significantly extended the lifespan of wild-type N2 worms and improved various age-related phenotypes, including muscle health, motility, pumping rate, and lipofuscin accumulation. Furthermore, these compounds exhibited notable alleviation of pathology associated with Parkinson's disease (PD) and Huntington's disease (HD), such as the reduction of α-synuclein and poly40 aggregates, improvement in motor deficits, and mitigation of neuronal damage. Meanwhile, DTCA and ETCA improved the lifespan and healthspan of PD- and HD-like C. elegans models. Additionally, DTCA and ETCA enhanced the resilience of C. elegans against heat and oxidative stress challenges. Mechanistic studies elucidated that DTCA and ETCA induced mitophagy and promoted mitochondrial biogenesis in C. elegans, while genetic mutations or RNAi knockdown affecting mitophagy and mitochondrial biogenesis effectively eliminated their capacity to extend lifespan and reduce pathological protein aggregates. Together, these compelling findings highlight the potential of DTCA and ETCA as promising therapeutic interventions for delaying aging and preventing age-related diseases.


Asunto(s)
Proteínas de Caenorhabditis elegans , Enfermedad de Parkinson , Saponinas , Animales , Caenorhabditis elegans/metabolismo , Longevidad , Mitofagia , Biogénesis de Organelos , Proteínas de Caenorhabditis elegans/genética , Proteínas de Caenorhabditis elegans/metabolismo , Saponinas/farmacología
14.
J Clin Neurosci ; 120: 55-59, 2024 Feb.
Artículo en Inglés | MEDLINE | ID: mdl-38194727

RESUMEN

PURPOSE: Non-acute vertebral ostial occlusion (VOO) is a debilitating condition with significant mortality and morbidity rates. However, currently, there is no consensus on the optimal treatment strategy for VOO. This study aims to examine the feasibility, effectiveness, and safety of endovascular recanalization in patients with VOO. METHODS: We conducted a retrospective review of data from 21 consecutive patients with VOO who underwent endovascular recanalization between May 2018 and August 2023. The patients were divided into two groups based on a new angiographic classification proposed by Gao et al. Type I (tapered stump group) included patients with non-acute extracranial vertebral artery ostial occlusion presenting a tapered occlusion stump. Type II (nontapered stump group) consisted of patients with a nontapered occlusion stump. We collected data on recanalization rates, perioperative complications, and follow-up outcomes. RESULTS: Our analysis included data from a total of 21 patients (22 lesions) with a mean age of 64.6 ± 10.6 years. The technical success rate was 66.7 % (14/21), and the rate of periprocedural complications was 14.3 % (3/21). The success rate of transitioning from the tapered stump group to the nontapered stump group was 90.9 % (10/11) and 40 % (4/10), respectively (P = 0.024). The perioperative complication rate for type I and type II patients was 18.2 % (2/11) and 10 % (1/10), respectively. Among these patients, 18 cases underwent endovascular recanalization using transfemoral access, while 3 patients underwent transradial access after failed transfemoral access, with successful outcomes for two patients. CONCLUSIONS: This study suggests that endovascular recanalization may offer a safe, effective, and feasible treatment option for VOO patients. Additionally, the proposed angiographic classification may serve as a useful guide in selecting suitable candidates for surgery.


Asunto(s)
Arteriopatías Oclusivas , Procedimientos Endovasculares , Humanos , Persona de Mediana Edad , Anciano , Arteriopatías Oclusivas/diagnóstico por imagen , Arteriopatías Oclusivas/cirugía , Arteriopatías Oclusivas/complicaciones , Angiografía , Estudios Retrospectivos , Procedimientos Endovasculares/efectos adversos , Resultado del Tratamiento
15.
bioRxiv ; 2024 Jan 08.
Artículo en Inglés | MEDLINE | ID: mdl-38260289

RESUMEN

CD177 plays an important role in the proliferation and differentiation of myeloid lineage cells including neutrophils, myelocytes, promyelocytes, megakaryocytes, and early erythroblasts in bone marrow. CD177 deficiency is a common phenotype in humans. Our previous studies revealed genetic mechanisms of human CD177 deficiency and expression variations. Up to now, immune functions of CD177 remain undefined. In the current study, we revealed human IgG as a ligand for CD177 by using flow cytometry, bead-rosette formation, and surface plasmon resonance (SPR) assays. In addition, we show that CD177 variants affect the binding capacity of CD177 for human IgG. Furthermore, we showed that the CD177 genetic variants significantly affect antibody-dependent cell-mediated cytotoxicity (ADCC) function. The demonstration of CD177 as a functional IgG Fc-receptor may provide new insights into CD177 immune function and genetic mechanism underlying CD177 as biomarkers for human diseases.

16.
Pharmacol Res ; 200: 107068, 2024 Feb.
Artículo en Inglés | MEDLINE | ID: mdl-38232908

RESUMEN

Leukopenia is the most common side effect of chemotherapy and radiotherapy. It potentially deteriorates into a life-threatening complication in cancer patients. Despite several agents being approved for clinical administration, there are still high incidences of pathogen-related disease due to a lack of functional immune cells. ADP-ribosyl cyclase of CD38 displays a regulatory effect on leukopoiesis and the immune system. To explore whether the ADP-ribosyl cyclase was a potential therapeutic target of leukopenia. We established a drug screening model based on an ADP-ribosyl cyclase-based pharmacophore generation algorithm and discovered three novel ADP-ribosyl cyclase agonists: ziyuglycoside II (ZGSII), brevifolincarboxylic acid (BA), and 3,4-dihydroxy-5-methoxybenzoic acid (DMA). Then, in vitro experiments demonstrated that these three natural compounds significantly promoted myeloid differentiation and antibacterial activity in NB4 cells. In vivo, experiments confirmed that the compounds also stimulated the recovery of leukocytes in irradiation-induced mice and zebrafish. The mechanism was investigated by network pharmacology, and the top 12 biological processes and the top 20 signaling pathways were obtained by intersecting target genes among ZGSII, BA, DMA, and leukopenia. The potential signaling molecules involved were further explored through experiments. Finally, the ADP-ribosyl cyclase agonists (ZGSII, BA, and DMA) has been found to regenerate microbicidal myeloid cells to effectively ameliorate leukopenia-associated infection by activating CD38/ADP-ribosyl cyclase-Ca2+-NFAT. In summary, this study constructs a drug screening model to discover active compounds against leukopenia, reveals the critical roles of ADP-ribosyl cyclase in promoting myeloid differentiation and the immune response, and provides a promising strategy for the treatment of radiation-induced leukopenia.


Asunto(s)
Antígenos CD , Leucopenia , Humanos , Ratones , Animales , ADP-Ribosil Ciclasa/metabolismo , ADP-Ribosil Ciclasa 1 , Antígenos CD/genética , Antígenos de Diferenciación/genética , Glicoproteínas de Membrana , Pez Cebra/metabolismo , Leucopenia/inducido químicamente , Leucopenia/tratamiento farmacológico
17.
Pharmaceuticals (Basel) ; 17(1)2024 Jan 13.
Artículo en Inglés | MEDLINE | ID: mdl-38256942

RESUMEN

Interleukins, a diverse family of cytokines produced by various cells, play crucial roles in immune responses, immunoregulation, and a wide range of physiological and pathological processes. In the context of megakaryopoiesis, thrombopoiesis, and platelet function, interleukins have emerged as key regulators, exerting significant influence on the development, maturation, and activity of megakaryocytes (MKs) and platelets. While the therapeutic potential of interleukins in platelet-related diseases has been recognized for decades, their clinical application has been hindered by limitations in basic research and challenges in drug development. Recent advancements in understanding the molecular mechanisms of interleukins and their interactions with MKs and platelets, coupled with breakthroughs in cytokine engineering, have revitalized the field of interleukin-based therapeutics. These breakthroughs have paved the way for the development of more effective and specific interleukin-based therapies for the treatment of platelet disorders. This review provides a comprehensive overview of the effects of interleukins on megakaryopoiesis, thrombopoiesis, and platelet function. It highlights the potential clinical applications of interleukins in regulating megakaryopoiesis and platelet function and discusses the latest bioengineering technologies that could improve the pharmacokinetic properties of interleukins. By synthesizing the current knowledge in this field, this review aims to provide valuable insights for future research into the clinical application of interleukins in platelet-related diseases.

18.
Exp Dermatol ; 33(1): e14979, 2024 Jan.
Artículo en Inglés | MEDLINE | ID: mdl-37975615

RESUMEN

Although a large number of existing studies have confirmed that people with vitiligo are prone to mental disorders, these observational studies may be subject to confounding factors and reverse causality, so the true causal relationship is inconclusive. We conducted a bidirectional Mendelian randomization (MR) analysis to assess the causality between vitiligo and mental disorders, namely depression, anxiety, insomnia, schizophrenia, bipolar disorder, obsessive-compulsive disorder (OCD) and attention-deficit hyperactivity disorder (ADHD). Summary statistics from large available genome-wide association study (GWAS) datasets for generalized vitiligo (n = 44 266), depression (n = 173 005), anxiety (n = 17 310), insomnia (n = 386 988), schizophrenia (n = 130 644), bipolar disorder (n = 413 466), OCD (n = 9725) and ADHD (n = 225 534) were utilized. Inverse-variance weighted (IVW), MR-Egger and weighted median were employed to estimate causal effects. Sensitivity analysis and MR Pleiotropy Residual Sum and Outliers (MR PRESSO) were conducted to assess heterogeneity and pleiotropy, ensuring the robustness of the results. Additionally, we corrected for estimating bias that might be brought on by sample overlap using MRlap. In our findings, none of the rigorous bidirectional MR analyses uncovered a significant causal association. Even after applying the MRlap correction, the effect sizes remained statistically nonsignificant, thereby reinforcing the conclusions drawn via IVW. In summary, our genetic-level investigation did not reveal a causal link between generalized vitiligo and mental disorders.


Asunto(s)
Trastornos Mentales , Trastornos del Inicio y del Mantenimiento del Sueño , Vitíligo , Humanos , Vitíligo/genética , Estudio de Asociación del Genoma Completo , Análisis de la Aleatorización Mendeliana , Trastornos Mentales/genética
19.
J Craniofac Surg ; 35(1): 150-153, 2024.
Artículo en Inglés | MEDLINE | ID: mdl-37754755

RESUMEN

PURPOSE: To analyze the epidemiology, pattern, and prevent measurement of pediatric maxillofacial trauma in Xinjiang, China. PATIENTS AND METHODS: Clinical records of patients aged 0 to 18 years with maxillofacial trauma over the 5 years were reviewed. Epidemiological features of data were collected for the cause of injury, age and sex distribution, frequency and type of injury, localization and frequency of soft tissue injuries, facial bone fractures, and presence of associated injuries. Statistical analyses performed included descriptive analysis, χ 2 test, and logistic regression analyses. RESULTS: Among the 450 patients, 333 were male and 117 were female, with a male-to-female ratio of 3.8:1, the mean age was 9.2±5.4 years; 223 cases were soft tissue injuries and 227 cases were maxillofacial fractures. The 16 to 18-year-old group was the highest, with the prevalence of maxillofacial fractures. The most common cause of pediatric maxillofacial trauma was traffic injuries. CONCLUSION: The incidence of maxillofacial trauma in pediatric patients correlates with a number of factors, including age, sex, and etiology of trauma. The 16 to 18-year-old group is the most prevalent group for maxillofacial trauma in pediatric patients, and traffic accidents are the leading cause of maxillofacial trauma in pediatric patients.


Asunto(s)
Traumatismos Maxilofaciales , Fracturas Craneales , Traumatismos de los Tejidos Blandos , Niño , Humanos , Masculino , Femenino , Preescolar , Adolescente , Estudios Retrospectivos , Traumatismos Maxilofaciales/epidemiología , Fracturas Craneales/epidemiología , Accidentes de Tránsito , Traumatismos de los Tejidos Blandos/epidemiología
20.
Small ; 20(5): e2305091, 2024 Feb.
Artículo en Inglés | MEDLINE | ID: mdl-37681505

RESUMEN

Animals with robust attachment abilities commonly exhibit stable attachment and convenient detachment. However, achieving an efficient attachment-detachment function in bioinspired adhesives is challenging owing to the complexity and delay of actuators. In this study, a class of multilayer adhesives (MAs) comprising backing, middle, and bottom layers is proposed to realize rapid switching by only adjusting the preload. At low preload, the MAs maintain intimate contact with the substrate. By contrast, a sufficiently large preload results in significant deformation of the middle layer, causing underside buckling and reducing adhesion. By optimizing the structural parameters of the MAs, a high switching ratio (up to 136×) can be achieved under different preloads. Furthermore, the design of the MAs incorporates a film-terminated structure, which prevents the embedding of dirt particles, simplifies cleaning, and maintains the separation and uprightness of the microstructures. Consequently, the MAs demonstrate practical potential for simple and efficient transportation applications, as they achieve switchable adhesion through their structure, exhibiting a high switching ratio and fast switching.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA